If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9x^2-13x-42=0
a = 9; b = -13; c = -42;
Δ = b2-4ac
Δ = -132-4·9·(-42)
Δ = 1681
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1681}=41$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-13)-41}{2*9}=\frac{-28}{18} =-1+5/9 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-13)+41}{2*9}=\frac{54}{18} =3 $
| 4-2x=x-1/2 | | 3(1+b)=-2-2(2b+1) | | 40-3(d)=2(d) | | 3(1+b)=-2-2(2b+1 | | 7(x-6)+2=3x-8 | | (8x-5)+16x=115 | | 2(3x-6)+4=16 | | -2x+7(x-3)=14 | | 1/2((x-2)*x)=60 | | -2b=-8 | | 2a-1=31-3 | | 4r^2-12r+8=0 | | 3^3x+4=9^x+1 | | -9/2d=32 | | 72x^2+25-30x=0 | | 15x+6=-8x+29 | | 2n+10-3n=4 | | 13+3x=3(x-2) | | x=2x-41 | | 8x+3=5x+(-6) | | 1/2x+6=1/2(-x-4) | | 5(4-n)=18-5n | | 5(4-n=18-5n | | (x+69)+(x+39)=90 | | 1.9p+0.75=3.8 | | 4(n-2)-n=-10+2n | | -4y+10=-(2(3y+4) | | –1.15p+2.85=5.84 | | 3/2=18/x+8 | | -9x+0=-12 | | 26=-6x-4(-2x-4) | | -2(10+7n)=-62 |